THE UNIVERSITY OF TEXAS

MD Anderson Cancer Center

Making Cancer History®

Infusion of Allogeneic 3rd party CD19-specific T cells (CD19RCD137⁺ T cells) in Patients with refractory CD19⁺ B-lineage malignancies

Dr. Laurence JN Cooper, MDACC

- To generate CD19-specific T cells that can be infused on demand when the intended recipient needs them, rather than when the T cells are available
- This will be achieved by genetically modifying umbilical cord blood-derived T cells to express a CD19-specific chimeric antigen receptor (CAR) and genetically editing the T cells with engineered artificial nuclease to eliminate expression of T-cell receptor

Issues to overcome in investigator-initiated clinical trials in academic centers

- Difficulties in generating CAR⁺ T-cells from patient
- Cost and resources to generate CAR⁺ T-cells for infusing into a single patient
- Many patients cannot wait for the manufacture and release of autologous CAR+ T cells
- Many patients' immune system is damaged precluding generation of autologous CAR+ T cells

Investigator-initiated Gene Transfer Trials under 4 INDs at MD Anderson Cancer Center

MDACC/ NCI #	Agent	Dose of CD19RCD28+ T cells	Enrolled	Products made	Infused
2007- 0635/ 00968760	CD19-specific T cells derived from patient combined with autologous HSCT	5x10 ⁷ /m ² to 5x10 ⁹ /m ² (IL-2 last 2 cohorts)	9 (all NHL)	7	5
2009- 0525/ 01497184	CD19-specific T cells derived from donor combined with allogeneic HSCT	10 ⁶ /m ² to 10 ⁸ /m ²	18 (ALL, n=11; NHL, n=6; CLL, n=1)	14	5
2010- 0835/ 01362452	CD19-specific T cells derived from umbilical cord blood (UCB) donor combined with UCB transplantation	10 ⁶ /m ² to 10 ⁸ /m ²	4 (ALL, n=3; NHL, n=1)	4	1
	CD19-specific T cells from CLL patients after chemotherapy (non-HSCT)	10 ⁷ /m ² to 5x10 ¹⁰ /m ²	1	1	0

One donor's genetically modified T cells to be infused in multiple patients

Healthy donor T cells

Patient

Defining an off-the-shelf T-cell product

- At this point, the desired product will be:
 - CAR⁺
 - TCR^{neg}
- We recognize, and anticipate, that infused allogeneic (HLAdisparate) T cells may be recognized by endogenous immune system leading to eradication of administered product
 - This may be desirable regarding patient safety for this first-inhuman application of CAR+TCR^{neg} T cells
 - Infusion of HLA-mismatched T cells occurs in other clinical settings (after HSCT) and results in therapeutic responses
 - We have plans to use ZFNs to generate CAR+TCR^{neg} HLA^{neg} T cells

SB system to genetically modify T cells to target CD19

- T cells targeting CD19 feasible gene therapy approach
 - Successful infusions of genetically modified T cells
 - Tolerable "on target" sideeffects
- Compelling patient population
 - Patients with advanced B-cell malignancies high rate of relapse

2nd generation CD19-specific CAR (CD19RCD28) signaling through CD28 and CD3-ζ scFv Modified hinge IgG_₄Fc CD28TM **CD137** CD3C

Shown as a homo-dimer

Approach to manufacturing

- UCB from banks collected in compliance with current good manufacturing practice
- T cells electroporated with SB system to stably express
 2nd generation CAR targeting CD19
 - CD19RCD137 CAR activates via chimeric CD3- ζ and CD137
- T cells electroporated with in vitro-transcribed mRNA coding for ZFNs specific for TCR β
- T cells propagated on aAPC and cryopreserved as a bank
 - Maintains telomere length to preserve replication senescence

Sleeping Beauty (SB) system transposon/transposase

Co-delivery into cells by nucleofection (Lonza)

ZFNs targeting TCR β

ZFN DNA plasmids for *in vitro* transcription to generate ZFNs

In vitro transcription

Co-delivery into cells by nucleofection (Lonza)

In Vitro Transcription of mRNA From Template Plasmid

Release criteria

- ✓ Single peak of expected size on BioAnalyzer
- \checkmark A260/230 > 1.8
- ✓ A260/280: 1.8-2.1
- ✓ Negative bacteria and fungal cultures

Off-the-shelf CD19-specific CAR+ T cells from UCB

Day15 after CAR DNA +SB11 DNA

Day6 after electro-transfer TRBC.ZFN from mRNA

Path to the clinic

- SB system has been used to genetically modify T cells to express CD19-specific CAR
- Patients have received SB-modified CAR+ T cells derived from UCB and peripheral blood
- Approach to manufacturing can be adapted to electroporate DNA and mRNA to stably express CAR and eliminate TCR

Zinc Finger Nucleases Targeting TCRB

Infusion of Allogeneic 3rd party CD19-specific T cells (CD19RCD137⁺ T cells) in Patients with refractory CD19⁺ B-lineage malignancies

Dr. Philip Gregory, Sangamo BioSciences

What are Zinc Finger Proteins (ZFPs)?

DNA binding motifs, abundance by species

Tupler R, Perini G, Green MR (2001). Nature 409: 832-833.

- Natural class of DNA binding proteins / transcription factors
- Exhibit sequence specific binding to a broad array of DNA sequences
- By far the most abundant class of DNAbinding domains found in human transcription factors

Natural versatility and specificity of ZFPs enables application to therapeutic target genes

Principles of ZFP-DNA Recognition

- Tandem fingers in major groove
- Each finger binds 3-4 bp
- N-finger protein spans 3N bp
- Target sequence is composite of finger subsites

Zif 268 - DNA complex; coordinates from N.P. Pavletich and C. O. Pabo, *Science* 252, 809 (1991)

DNA Recognition By Zinc Fingers

Finger "Design"			Triplet
-1 23 6			Specificity
S	LT		GCG
S	LT		GGG
S	LT		GCT
S	LT		GCA

- Mediated by residues
 -1 to 6 of α-helix
- Most critical positions are -1, 2, 3 and 6
- One finger typically contacts 3 bases
- Correspondence between helix sequence and triplet binding preference

ZFPs are linked to functional domains to drive targeted therapeutic outcomes

5' T A C C C A A C G C G A A T T A T G G C G G C G T G C G C T T A A C G C A T G G G T 3'
3' A T G G G T T G C G C T T A A T A C C G C C G C A C G C G A A T T G C G T A C C C A 5'

Gene Target

Modified nucleases (obligate heterodimers) further increases specificity

Miller et al. NBT 2007

An improved zinc-finger nuclease architecture for highly specific genome editing

Doyon et al. NMETH 2010

Enhanced zinc-finger nuclease activity with improved obligate heterodimeric architectures

Double Strand Break (DSB)

Lead development overview

Factors affecting ZFN specificity

- High DNA binding specificity intrinsic to wt and engineered C₂H₂ zinc finger DNA binding domains
- The absolute requirement for both ZFN monomers to be resident on the DNA target to generate an active nuclease with catalytic activity
- The dimerization interface of the Fokl domain is weak resulting in independent monomer DNA binding
- Use of obligate heterodimer Fokl domains which reduce the possibility of unwanted cleavage by homodimerization
- Strict spatial / orientation requirements for cleavage
- Fidelity of the natural DNA repair pathways

Site Selection Assay (SELEX)

Assessing the specificity of ZFN action

Molecular assessment for ZFN specificity:

- SELEX-based analysis of the top 30 sites genome-wide with the highest homology to the experimentally determined consensus
- Samples chosen for analysis will use an ZFN mRNA dose in excess of that used in the clinical manufacturing process
- Direct DNA sequencing assay (run at ≥10,000 sequence reads per site)

Note that the selection for cells lacking CD3 (a result of **on target** activity) further serves to increase the sensitivity of this off-target analysis

Biological assessments:

- Demonstrate the lack of autonomous growth in the absence of activation signaling and exogenous cytokines (IL-2)
- Confirm normal karyotype of the final product

Other assays for ZFN specificity

Pattanayak, V. et al.. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Meth. 8, 765–770 (2011).

- In vitro system with limited utility due to excess of ZFN used
- Sites identified have minimal overlap with known cleavage events in vivo

Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. *Nat. Biotechnol.* 29, 816–823 (2011).:

- In vivo approach laborious but useful (more suited to high risk applications)
- Sites identified have been confirmed by independent methods
- Data support the consensus binding activity derived by SELEX
- SELEX-based off target search is a facile and sensitive method for ZFN evaluation

Preliminary application of ZFNs targeting TCRβ

No off-target cleavage at the SELEX derived Top 15 sites*

medicine

Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer

Elena Provasi^{1,2,11}, Pietro Genovese^{2,3,11}, Angelo Lombardo³, Zulma Magnani¹, Pei-Qi Liu⁴, Andreas Reik⁴, Victoria Chu⁴, David E Paschon⁴, Lei Zhang⁴, Jurgen Kuball^{5,10}, Barbara Camisa¹, Attilio Bondanza¹, Giulia Casorati⁶, Maurilio Ponzoni⁷, Fabio Ciceri^{1,8}, Claudio Bordignon^{2,9}, Philip D Greenberg⁵, Michael C Holmes⁴, Philip D Gregory⁴, Luigi Naldini^{2,3} & Chiara Bonini^{1,2,8}

No off-target cleavage at the SELEX derived Top 15 sites*

blood

A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR

Hiroki Torikai,¹ Andreas Reik,² Pei-Qi Liu,² Yuanyue Zhou,² Ling Zhang,¹ Sourindra Maiti,¹ Helen Huls,¹ Jeffrey C. Miller,² Partow Kebriaei,³ Brian Rabinovitch,¹ Dean A. Lee,¹,⁴ Richard E. Champlin,³ Chiara Bonini,⁵ Luigi Naldini,⁶ Edward J. Rebar,² Philip D. Gregory,² Michael C. Holmes,² and Laurence J. N. Cooper¹,⁴

^{*} Assay sensitivity ~1% (on target activity ~48%)

NIH RAC experience with ZFN-modified cells

Specificity assessment exploited SELEX-based Top 15 sites

0704-843 A Phase I Study of Autologous T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nuclease SB-728 in HIV-Infected Patients.

<u>Important features:</u> HIV, adenoviral (Ad5/F35) vector, autologous CD4+ T cells, ZFN KO NIH/OBA Receipt Date: 4-13-07. **Publicly Reviewed at the June 2007 RAC meeting**

0704-848 A Phase I Study of Intratumoral Administration of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Alloclone-002 Modified for Glucocorticoid Resistance and Interleukin-2.

Important features: GBM, adenoviral vector (Ad5/F35), allogeneic CD8+ T cells, ZFN KO NIH/OBA Receipt Date: 4-20-07. **Publicly Reviewed at the June 2007 RAC meeting**

1304-1228 A Phase I Study of Autologous T- Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 in HIV Infected Patients Pre-treated or Not with Cyclophosphamide.

Important features: HIV, mRNA electroporation, autologous CD4+ T cells, ZFN KO NIH/OBA Receipt Date: 04-15-13. **Not Selected for RAC Public Review: 05-07-13**

Patient safety

Molecular assessment for ZFN specificity:

- SELEX-based analysis of the top 30 sites genome-wide with the highest homology to the experimentally determined consensus
- Samples chosen for analysis will use an ZFN mRNA dose in excess of that used in the clinical manufacturing process
- Direct DNA sequencing assay (run at ≥10,000 sequence reads per site)

Biological assessments:

- Sterility
 - Bacteria, fungi, mycoplasma, endotoxin
- Identity
 - CAR expression, CD4/CD8 expression
 - Lack of TCR/CD3, CD32 (aAPC)
 - HLA expression
- Safety
 - Demonstrate the lack of autonomous growth in the absence of activation signaling and exogenous cytokines
 - Confirm normal karyotype
 - Lack of SB11

Genetic engineering is needed to meet patient needs

- T cells genetically modified to express CAR and eliminate TCR can be pre-made and infused on demand into multiple recipients
- The final product will be manufactured at MDACC
- Trial undertaken to evaluate safety and feasibility of this approach to T-cell therapy in a patient population with unmet clinical needs

THE UNIVERSITY OF TEXAS

MD Anderson Cancer Center

Making Cancer History®

Phase I Clinical Trial overview

Infusion of Allogeneic 3rd party CD19-specific T cells (CD19RCD137⁺ T cells) in Patients with refractory CD19⁺ B-lineage malignancies

Dr. Partow Kebriaei, MDACC

Rationale

 Patients with advanced CD19 positive lymphoid malignancies are refractory to all currently available treatment, including high dose chemotherapy and hematopoietic stem cell transplant.

* Treatment needed urgently at time of relapse.

Probability of Survival after HLA-identical Sibling Transplants for Diffuse Large B-Cell Lymphoma, 2000-2010

Probability of Survival after Unrelated Donor Transplants for ALL, Age ≥ 20 yrs, 2000-2010 - By Disease Status -

Protocol Objectives

- Safety, feasibility, and persistence of 3rd party, modified T cells
 - Host immune response against CAR
 - Homing ability of genetically modified T cells
 - Disease response

Rationale

- Enhance immune response to improve survival
 - Target disease using mechanisms
 independent of chemo- and radiotherapy
 with
 non-overlapping toxicities
 - -Genetically modified, tumor-specific T cells
 - Readily available product

Study Population

- Refractory or relapsed CD19⁺ lymphoid malignancies, CLL, ALL, NHL, SLL, FL or MCL, not in complete remission
- Patients must be minimum 3 months from prior transplant
- Age 18-70 years
- Zubrod performance 0−2, or Lansky PS ≥ 50%
- No active infection or Grade >2 (CTC vs. 4) toxicity at time of T-cell infusion

Treatment Plan

- T cells infusion no sooner than 48 hours and no later than 1 week post completion chemotherapy.
- T-cell infusion over 2 days: Up to 25% of cells first day, and up to 75% of the remaining T cell on second day.
- Patients eligible for recurrent therapy with lymphodepletion followed by T cell infusion up to three times if remain with active disease, with minimum 6 weeks of observation between treatments.

Statistical Design

Dose Cohort	Single T-cell Dose
Dose Level -1	Not to exceed 10 ⁶ /m ²
Dose Level A	$>10^6/m^2$ but $\leq 10^7/m^2$
Dose Level B	$>10^7/\text{m}^2$ but $\leq 5 \times 10^7/\text{m}^2$
Dose Level C	$> 5 \times 10^7 / \text{m}^2 \text{ but } \le 10^8 / \text{m}^2$
Dose Level D	$>10^8/\text{m}^2$ but $\leq 5 \times 10^8/\text{m}^2$
Dose Level E	$> 5 \times 10^8 / \text{m}^2 \text{ but } \le 10^9 / \text{m}^2$
Dose Level F	$>10^9/\text{m}^2$ but $\leq 5 \times 10^9/\text{m}^2$

- Max 42 patients enrolled at 6 dose combinations
- Study duration 1 year
- Descriptive: demographics, clinical events/dose level
- Number of patients with DLT/dose level
 - Dose escalate if < 2/3 of patients have DLT

Evaluations, Safety Assessments

Pre-Treatment

- Baseline disease staging
- Well-described release criteria for T-cell product
- B- and T-cell subset analyses by flow, quantitative Igs, baseline serologic testing for antibody response against CD19-specific transgene

After T-cell infusion

- Cultures of T-cell product obtained to monitor for contamination
- Toxicity grading for adverse events
- Testing for protein expression and genetic typing, including PCR for presence of infused T cells and assessment of clonality
- Disease staging

Long-term follow-up

 Yearly safety evaluations for 15 years for patients who received T-cell infusion

Management of Potential Toxicity

- Microbial contamination of T-cell product
 - Standard GMP procedures will be followed for microbial contamination
- Management of adverse event (AE) attributable to T cells
 - Start tocilizumab
 - Then, start corticosteroids
 - If no improvement additional immunosuppression added

Preparing for multi-center trials

- Patient-specific T cells teach proof-of-principle, but inherent heterogeneity complicates translational appeal
- We didn't have to make tumor-specific T cells for every patient, but instead could make one source of T cells for all patients?
 - Lends itself to centralized manufacturing
 - Undertake Phase IIb multi-center trials powered for efficacy
 - Undertake multi-component trials at T-cell MTD